代码语言
.
CSharp
.
JS
Java
Asp.Net
C
MSSQL
PHP
Css
PLSQL
Python
Shell
EBS
ASP
Perl
ObjC
VB.Net
VBS
MYSQL
GO
Delphi
AS
DB2
Domino
Rails
ActionScript
Scala
代码分类
文件
系统
字符串
数据库
网络相关
图形/GUI
多媒体
算法
游戏
Jquery
Extjs
Android
HTML5
菜单
网页交互
WinForm
控件
企业应用
安全与加密
脚本/批处理
开放平台
其它
【
C
】
各种内部排序算法的实现
作者:
songlee
/ 发布于
2014/6/9
/
1050
各种排序算法的思路、效率和具体实现,包括插入排序(直接插入排序,折半插入排序,希尔排序)、交换排序(冒泡排序,快速排序)、选择排序(简单选择排序,堆排序)、2-路归并排序。
/************************************************************************* > File Name: sort.cpp > Author: SongLee > E-mail: lisong.shine@qq.com > Created Time: 2014年04月27日 星期日 22时28分39秒 > Personal Blog: http://songlee24.github.io ************************************************************************/ #include<iostream> using namespace std; typedef int ElementType; /* *<<直接插入排序>> * 为了实现N个数的排序,将后面N-1个数依次插入到前面已排好的子序列中, *假定刚开始第1个数是一个已排好序的子序列。经过N-1趟就能得到一个有序序列。 *****时间复杂度:最好情况O(n),最坏情况O(n^2),平均情况O(n^2). *****空间复杂度:O(1) *****稳定性:稳定 */ void InsertSort(ElementType A[], int n) { int i,j; ElementType temp; // 临时变量 for(i=1; i<n; ++i) { temp = A[i]; for(j = i; j>0 && A[j-1]>temp; --j) A[j] = A[j-1]; A[j] = temp; } } /* *<<折半插入排序>> * 与直接插入排序不同的是,折半插入排序不是边比较边移动,而是将比较和移 *动操作分离出来,即先折半查找出元素的待插入位置,然后再统一地移动待插入位 *置之后的所有元素。不难看出折半插入排序仅仅是减少了比较的次数。 *****时间复杂度:O(n^2) *****空间复杂度:O(1) *****稳定性:稳定 */ void BinaryInsertSort(ElementType A[], int n) { int i, j, low, high, mid; ElementType temp; for(i=1; i<n; ++i) { temp = A[i]; low = 0; high = i-1; // 设置折半查找的范围 while(low <= high) { mid = (low+high)/2; // 取中间点 if(A[mid] > temp) high = mid-1; else low = mid+1; } for(j=i-1; j>=high+1; --j) // 统一后移 A[j+1] = A[j]; A[high+1] = temp; // 插入 } } /* *<<希尔排序>> * 希尔排序通过比较相距一定间隔的元素,即形如L[i,i+d,i+2d,...i+kd]的序列 *然后缩小间距,再对各分组序列进行排序。直到只比较相邻元素的最后一趟排序为 *止,即最后的间距为1。希尔排序有时也叫做*缩小增量排序* *****时间复杂度:依赖于增量序列的选择,但最坏情况才为O(N^2) *****空间复杂度:O(1) *****稳定性:不稳定 */ void ShellSort(ElementType A[], int n) { int i, j, dk; // dk是增量 ElementType temp; for(dk=n/2; dk>0; dk/=2) // 增量变化 { for(i=dk; i<n; ++i) // 每个分组序列进行直接插入排序 { temp = A[i]; for(j=i-dk; j>=0 && A[j]>temp; j-=dk) A[j+dk] = A[j]; // 后移 A[j+dk] = temp; } } } /* *<<冒泡排序>> * 冒泡排序的基本思想是从后往前(或从前往后)两两比较相邻元素的值,若为 *逆序,则交换它们,直到序列比较完。我们称它为一趟冒泡。每一趟冒泡都会将一 *个元素放置到其最终位置上。 *****时间复杂度:最好情况O(n),最坏情况O(n^2),平均情况O(n^2) *****空间复杂度:O(1) *****稳定性:稳定 */ void BubbleSort(ElementType A[], int n) { for(int i=0; i<n-1; ++i) { bool flag = false; // 表示本次冒泡是否发生交换的标志 for(int j=n-1; j>i; --j) // 从后往前 { if(A[j-1] > A[j]) { flag = true; // 交换 A[j-1] = A[j-1]^A[j]; A[j] = A[j-1]^A[j]; A[j-1] = A[j-1]^A[j]; } } if(flag == false) return; } } /* *<<快速排序>> * 快速排序是对冒泡排序的一种改进。其基本思想是基于分治法:在待排序表L[n] *中任取一个元素pivot作为基准,通过一趟排序将序列划分为两部分L[1...K-1]和 *L[k+1...n],是的L[1...k-1]中的所有元素都小于pivot,而L[k+1...n]中所有元素 *都大于或等于pivot。则pivot放在了其最终位置L(k)上。然后,分别递归地对两个子 *序列重复上述过程,直至每部分内只有一个元素或空为止,即所有元素放在了其最终 *位置上。 *****时间复杂度:快排的运行时间与划分是否对称有关,最坏情况O(n^2),最好情况 *O(nlogn),平均情况为O(nlogn) *****空间复杂度:由于需要递归工作栈,最坏情况为O(n),平均情况为O(logn) *****稳定性:不稳定 */ int Partition(ElementType A[], int low, int high) { // 划分操作有很多版本,这里就总以当前表中第一个元素作为枢纽/基准 ElementType pivot = A[low]; while(low < high) { while(low<high && A[high]>=pivot) --high; A[low] = A[high]; // 将比枢纽值小的元素移到左端 while(low<high && A[low]<=pivot) ++low; A[high] = A[low]; // 将比枢纽值大的元素移到右端 } A[low] = pivot; // 枢纽元素放到最终位置 return low; // 返回枢纽元素的位置 } void QuickSort(ElementType A[], int low, int high) { if(low < high) // 递归跳出的条件 { int pivotPos = Partition(A, low, high); // 划分操作,返回基准元素的最终位置 QuickSort(A, low, pivotPos-1); // 递归 QuickSort(A, pivotPos+1, high); } } /* *<<简单选择排序>> * 选择排序的算法思想很简单,假设序列为L[n],第i趟排序即从L[i...n]中选择 *关键字最小的元素与L(i)交换,每一趟排序可以确定一个元素的最终位置。经过n-1 *趟排序就可以使得序列有序了。 *****时间复杂度:始终是O(n^2) *****空间复杂度:O(1) *****稳定性:不稳定 */ void SelectedSort(ElementType A[], int n) { for(int i=0; i<n-1; ++i) // 一共进行n-1趟 { int minPos = i; // 记录最小元素的位置 for(int j=i+1; j<n; ++j) if(A[j] < A[minPos]) minPos = j; if(minPos != i) // 与第i个位置交换 { A[i] = A[i]^A[minPos]; A[minPos] = A[i]^A[minPos]; A[i] = A[i]^A[minPos]; } } } /* *<<堆排序>> * 堆排序是一种树形选择排序方法,在排序过程中,将L[n]看成是一棵完全二叉 *树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当 *前无序区中选择关键字最大(或最小)的元素。堆排序的思路是:首先将序列L[n] *的n个元素建成初始堆,由于堆本身的特点(以大根堆为例),堆顶元素就是最大 *值。输出堆顶元素后,通常将堆底元素送入堆顶,此时根结点已不满足大根堆的性 *质,堆被破坏,将堆顶元素向下调整使其继续保持大根堆的性质,再输出堆顶元素。 *如此重复,直到堆中仅剩下一个元素为止。 *****时间复杂度:O(nlogn) *****空间复杂度:O(1) *****稳定性:不稳定 */ void AdjustDown(ElementType A[], int i, int len) { ElementType temp = A[i]; // 暂存A[i] for(int largest=2*i+1; largest<len; largest=2*largest+1) { if(largest!=len-1 && A[largest+1]>A[largest]) ++largest; // 如果右子结点大 if(temp < A[largest]) { A[i] = A[largest]; i = largest; // 记录交换后的位置 } else break; } A[i] = temp; // 被筛选结点的值放入最终位置 } void BuildMaxHeap(ElementType A[], int len) { for(int i=len/2-1; i>=0; --i) // 从i=[n/2]~1,反复调整堆 AdjustDown(A, i, len); } void HeapSort(ElementType A[], int n) { BuildMaxHeap(A, n); // 初始建堆 for(int i=n-1; i>0; --i) // n-1趟的交换和建堆过程 { // 输出最大的堆顶元素(和堆底元素交换) A[0] = A[0]^A[i]; A[i] = A[0]^A[i]; A[0] = A[0]^A[i]; // 调整,把剩余的n-1个元素整理成堆 AdjustDown(A, 0, i); } } /* *<<2-路归并排序>> * 顾名思义,2-路归并就是将2个有序表组合成一个新的有序表。假定待排序表 *有n个元素,则可以看成是n个有序的子表,每个子表长度为1,然后两两归并...不 *停重复,直到合成一个长度为n的有序序列为止。Merge()函数是将前后相邻的两个 *有序表归并为一个有序表,设A[low...mid]和A[mid+1...high]存放在同一顺序表的 *相邻位置上,先将它们复制到辅助数组B中。每次从对应B中的两个段取出一个元素 *进行比较,将较小者放入A中。 *****时间复杂度:每一趟归并为O(n),共log2n趟,所以时间为O(nlog2n) *****空间复杂度:O(n) *****稳定性:稳定 */ ElementType *B = new ElementType[13]; // 和数组A一样大 void Merge(ElementType A[], int low, int mid, int high) { int i, j, k; for(k=low; k<=high; ++k) B[k] = A[k]; // 将A中所有元素复制到B for(i=low,j=mid+1,k=i; i<=mid&&j<=high; ++k) { if(B[i] <= B[j]) // 比较B的左右两段序列中的元素 A[k] = B[i++]; // 将较小值复制到A中 else A[k] = B[j++]; } while(i<=mid) A[k++] = B[i++]; // 若第一个表未检测完,复制 while(j<=high) A[k++] = B[j++]; // 若第二个表未检测完,复制 } void MergeSort(ElementType A[], int low, int high) { if(low < high) { int mid = (low + high)/2; MergeSort(A, low, mid); // 对左侧子序列进行递归排序 MergeSort(A, mid+1, high); // 对右侧子序列进行递归排序 Merge(A, low, mid, high); // 归并 } } /* * 输出函数 */ void print(ElementType A[], int n) { for(int i=0; i<n; ++i) { cout << A[i] << " "; } cout << endl; } /* * 主函数 */ int main() { ElementType Arr[13] = {5,2,1,8,3,6,4,7,0,9,12,10,11}; //InsertSort(Arr, 13); //BinaryInsertSort(Arr, 13); //ShellSort(Arr, 13); //BubbleSort(Arr, 13); //QuickSort(Arr, 0, 12); //SelectedSort(Arr, 13); //HeapSort(Arr, 13); //MergeSort(Arr, 0, 12); print(Arr, 13); return 0; }
试试其它关键字
排序算法
排序
算法
同语言下
.
获取手机通讯录 iOS去除数字以外的所有字符
.
异步加载音乐等资源
.
交通罚单管理系统
.
freemark实现,简单的替换
.
计算斐波那契数列
.
base64解码 包括解码长度
.
图像显示
.
冒泡排序
.
输入十进制数,输出指定进制
.
链式栈
可能有用的
.
C#实现的html内容截取
.
List 切割成几份 工具类
.
SQL查询 多列合并成一行用逗号隔开
.
一行一行读取txt的内容
.
C#动态修改文件夹名称(FSO实现,不移动文件)
.
c# 移动文件或文件夹
.
c#图片添加水印
.
Java PDF转换成图片并输出给前台展示
.
网站后台修改图片尺寸代码
.
处理大图片在缩略图时的展示
songlee
贡献的其它代码
(
3
)
.
隐藏或显示工具栏
.
各种内部排序算法的实现
.
从字典中找出所有变位词集合
Copyright © 2004 - 2024 dezai.cn. All Rights Reserved
站长博客
粤ICP备13059550号-3